Epistasis in Genetic Algorithms: An Experimental Design
Perspective *

1

In an earlier paper [1], we introduced the experimen-
tal design (ED) decomposition model as a useful per-
spective for the analysis of genetic algorithms (GAs).
However, the necessarily expository nature of that pa-
per meant that we were not able fully to explore the
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Abstract

In an earlier paper we examined the rela-
tionship between genetic algorithms (GAs)
and traditional methods of expertmental de-
stgn. This was motivated by an investiga-
tion into the problems caused by epistasis in
the implementation and application of GAs
to optimization problems. We showed how
this viewpoint enables us to gain further in-
sights into the determination of epistatic ef-
fects, and into the value of different forms of
encoding a problem for a GA solution. We
also demonstrated the equivalence of this ap-
proach to Walsh transform analysis.

In this paper we consider further the ques-
tion of whether the epistasis metric actually
gives a good prediction of the ease or diffi-
culty of solution of a given problem by a GA.
Our original analysis assumed, as does the
rest of the related literature, knowledge of
the complete solution space. In practice, we
only ever sample a fraction of all possible so-
lutions, and this raises significant questions
which are the subject of the second part of
this paper. In order to analyse these ques-
tions, we introduce the concept of alias sets,
and conclude by discussing some implications
for the traditional understanding of how GAs
work.

Introduction

Morgan Kaufmann, San Mateo, CA.

value of the proposed approach to the measurement of
epistasis, and we intend to return to this subject in
greater depth in the current article.

In order to make this paper self-contained for read-
ers who have not seen [1], we repeat the basic ED
model here. For those needing more general informa-
tion on the field of experimental design, a very com-
prehensive introduction can be found in Hinkelmann
and Kempthorne [2].

We assume that we have populations of binary strings
{S} of length [, and that the fitness of string S is de-
noted by v(S). We use the term Universe to denote
the set of all possible 2/ strings, and reserve the use of
the term population for the sense in which it is com-
monly used in the GA community.

The idea of assuming an underlying linear model (de-
fined on the bits) for the fitness of a string is implicit
in several studies of GAs. Davidor [3, 4] for example,
did so in his attempt to define measures of epistasis—a
study which we dealt with in some detail in the first
paper and will return to again here. Assuming no epis-
tasis, we can write such a model as

l
v(S) = constant + Z(eﬂect of allele at gene 7),

i=1

while at the other extreme, we can express the full
epistatic model as

!
v(S) = constant + Z(eﬂect of allele at gene )
i=1
-1 1
+ Z Z (interaction of alleles at genes ¢ and j)
i=1 j=i41
+...

+(interaction of alleles at genes 1,....)

In conventional experimental design, the above model
would actually be written in parametric form, and
would also allow for the possibility of random error.
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For example, the model for a string of 3 bits could be
written as follows:

Upgrs =
+(aBY)pgr + Epgrs

where vpg, s is the fitness of the string (p, ¢, ), and the
subscript s denotes the replication number (i.e. the
5" occurrence of the string). If there is no intrinsic
random error, we can of course drop the final term
(and of course the subscript s). The parameters on

the right-hand side are as follows:

Bt ap + B+ + (@B)pg + (@7)pr + (B7)gr

) average fitness

ap effect of allele p at gene 1

Bq effect of allele ¢ at gene 2

Yy effect of allele r at gene 3

(@f)pq joint effect of allele p at gene 1 and allele ¢
at gene 2

(a¥)pr joint effect of allele p at gene 1 and allele r
at gene 3

(BY)ar joint effect of allele ¢ at gene 2 and allele r
at gene 3

(aB7)par joint effect of allele p at gene 1, allele g at

gene 2 and allele r at gene 3
random error for replication s of string

(p,q,7)

Davidor assumes zero random error, which is reason-
able in many, although not all, applications of GAs,
and we shall follow suit.

In the first paper we also followed Davidor in assuming
that we knew the fitness of every one of the whole
universe of strings, in order to present the basic ED
approach in as uncomplicated a manner as possible.
However, in the real situation, the various quantities
proposed by Davidor for obtaining an epistasis metric
are only estimates of parameters. In fact, not only are
these measures compromised, but (as we shall show) so
are the estimates of schema fitness—quantities which
are fundamental in the traditional understanding of

how GAs work.

1.1 An example

To motivate the arguments, suppose we have a 3-bit
string, and the fitness of every string in the Universe
is known. There are of course 23 = 8 strings , and
therefore 8 fitness values, but the experimental design
model above has 27 parameters. It is thus essential
to impose some side conditions if these parameters are
to be estimated; the usual ones are the obvious con-
straints that at every order of interaction, the param-
eters sum to zero for each subscript. This results in
an additional 19 independent relationships and thus
allows the ‘solution’ of the above model—in the sense
that all the parameter values can be determined if we
have observed every one of the 8 possible strings—the

Universe. For example, we find that

B = Usss
pHtoap, = v forp=0,1
H+ 0By = Vi forg=0,1
B4+Yr = Vsep forr=20,1

where the notation vp., for instance, means averag-
ing over subscripts ¢ and r. These effects are exactly
equivalent to Davidor’s ‘excess allele values’, while his
‘excess genic values’ are found by summing «,, 8, and
v, for each possible combination of p, ¢, 7. Finally, his
‘string genic value’ is clearly

ptap+ By + e

The difference between the actual value and the genic
value, €(5), is therefore simply the sum of all the in-
teraction terms; putting it another way, zero epistasis
is seen to be equivalent to having no interactions in
the model.

In [1] we showed how this information can be obtained
by the well-known statistical method of ‘Analysis of
Variance’ (Anova), whereby the variability of the fit-
ness values (measured by sums of squared deviations
from mean fitness, and denoted by SS) is partitioned
into orthogonal components from identifiable sources.
Associated with these SS, are the degrees of freedom—
the number of independent elements in the associated

SS.
Tt is well-known (and easy to prove) that
Total SS = Main effects SS + Interaction SS

and these values Davidor simply divides by a constant
to obtain his ‘variances’. Thus for the Universe, it is
hardly surprising to find that

Total ‘variance’ = Genic ‘variance’+Epistasis ‘variance’.

However, when Davidor examined the case of a sample,
this result appeared no longer to be true; in particu-
lar, some of the ‘variances’ turned out to be negative.
Later we shall show why this occurs, and how his anal-
ysis would have to be modified in order to retain the
additivity of the variances.

2 The Measurement of Epistasis

Given the partitioning of the variances in the above
way, an obvious metric for the degree of epistasis in a
problem is to express the Interaction SS as a percent-
age of the Total SS. The four 3-bit functions Davidor
used were analysed in [1], and using this metric epista-
sis varied from 0% for the case of a linear function to
93% for a deceptive function. The first question that
arises i1s naturally whether this metric is useful and
meaningful in the sense that it relates to the likely de-
gree of difficulty for solving the problem by means of
a GA.
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In order to explore this question further, we carried out
some experiments using N K-landscapes as described
by Manderick et al. [5]. Varying the parameter K for
these functions has the effect of changing the amount
of epistasis, and in [5] it is suggested that a GA will
find problems with high values of K more difficult than
low values. Table 1 shows the results of some experi-
ments for N = 9 and K = 1,2,3,4 (10 experiments for
each K), where the interaction SS has been measured
as a percentage of the total SS.

Table 1: Values of the epistasis metric for 10 9K-
landscapes

K | Mean Standard deviation
1 40.2 9.3
2 62.5 13.5
3 77.6 8.6
4 85.5 6.4

As a contrasting example, Grefenstette’s ‘easy decep-
tive’ function [6, p.81] measured only 7.2% using the
epistasis metric. From these results it would seem a
reasonable deduction that using this metric leads to a
means of detecting epistatic problems, and therefore a
method of determining the degree of difficulty facing
a GA.

However, before leaping to this conclusion, we need to
examine the nature of interaction effects more care-
fully. Figure 1 gives a pictorial representation of inter-
action in the case of two genes A and B.

What this illustrates is as follows: in the upper dia-
gram, the best allele for each gene i1s 1, and while there
is epistasis, in that the joint effect of having the alleles
of both A and B set at 1 exceeds the sum of the in-
dividual main effects, its influence is benign since the
interaction reinforces the main effects. However, in the
lower diagram, the interaction has a malign influence:
the best allele for both A and B is 1, but overall it 1s
better to set gene A at 0. From a traditional GA per-
spective, there is clearly an element of deception about
the second case: the schema average vy, exceeds vy,
but vgr > v11.

In terms of the actual values of the effects, the first sit-
uation corresponds to the case where the interaction
effect (af)o1 has the same sign as the main effect ap,
and the second to the case where the signs are differ-
ent. In fact it is easily seen from the conditions in the
second case (v1, > vg. and vgy > v11) that

(Ozﬁ)m > —«y.
It is natural to ask therefore, whether the existence
of effects of different sign i1s an important influence on
the epistasis of a particular problem. The answer 1s:
maybe!

First, we should realize that the magnitude of the in-
teraction (relative to its associated main effects) is also

Fitness Gene B - allele 1
Gene B - allele 0
| |
allele 0 allele 1  Gene A
Fitness
Gene B - allele 1
Gene B - allele 0
| |
allele 0 allele 1  Gene A

Figure 1: Benign and malign interactions

important. In Figure 2 the effects are still of opposite
sign, but there will be little difficulty in finding the
best combination because the best allele for gene A is
now 0; in terms of schema averages, vy, < vgs.

Secondly, the order of the interaction terms is also
relevant. The side conditions on the effects result in
the constraint that for the case of 2-gene interactions,

(045)11 = (045)00 = —(045)01 = —(045)10

However, for a 3-gene interaction («of7y)per say, the
relationships for different values of p, g, r are

(0467)111 = (Oéﬁ’Y)mo = (Oéﬁ’Y)ow = (Oéﬁ’Y)om =

—(afy)i10 = —(afB7)101 = —(aB7)o11 = —(aB7)o00-
On applying these relationships to a particular situ-
ation, it becomes clear that it may be the combined
effect of all interactions up to a particular order that
determines the difficulty of solving a particular prob-
lem. For example, in a 3-bit problem where we have
Voxx < Ulxs, but vp11 > w111, the conditions can be
shown to reduce to

(o1 + (@y)o1 + (afy)o11 > —ap
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Fitness

Gene B - allele 1

Gene B - allele 0

| |

allele 0 allele 1  Gene A

Figure 2: Relatively small interaction

whereas in the case vgp; > v111, they become

(@y)o1 + (By)o1 > —(ao + Bo).

Both cases are epistatic to some degree, but in the sec-
ond case the 3-gene interaction (no matter how large
it is) is irrelevant.

However, if this analysis is followed through to the
calculation of the Sums of Squares, it becomes clear
that after cancelling some factors out, we are left with
terms in the square of the effect, so that positive in-
teraction effects cannot be distinguished from negative
ones. For example, in the case of a 3-bit binary string,
the SS due to the first-order interaction term between
genes 1 and 2 is (see [1] for details)

Z Z Z(qu* — Upsx — Uxgx + U***)z
p g T
which in virtue of the side conditions reduces to
23D (aB),
P g

Thus Davidor’s variance metric will have the same
value for functions that are actually quite different in
terms of their difficulty of solution.

In summary, we see that the existence of large interac-
tion Sums of Squares may be an important indicator
of epistasis in some cases but not in others. The prob-
lem 1s that we cannot tell the difference simply from
the SS, and we need the auxiliary information about
the magnitude and sign of the effects to get a clearer
picture of the difficulty of a particular problem.

In [1] we showed that Goldberg’s 3-bit deceptive func-
tion [7] is characterized by a large (negative) 3-gene in-
teraction, and by conditions that imply combinations
of interactions must have a net effect greater than the
main effects. This can be extended to longer strings,
and in general it can be shown that a class of hard

deceptive functions may be generated by a large high-
order interaction term of an appropriate sign, as in
the analysis by Homaifar et al. [8] for example. (In
[8] Walsh functions are used; that these are equivalent
to ED is shown in [1].) Other hard but non-deceptive
functions such as that described by Grefenstette [6]
can also be shown to have large interaction terms, so
it would seem that if we could establish the existence or
otherwise of substantial high-order interaction effects,
it would certainly be a useful indicator of problem dif-
ficulty.

3 Making Sense of Partial Information

The next question to consider is how this auxiliary
information can be obtained in practice. A GA popu-
lation of strings is really only a sample of the Universe
of chromosomes, but this fact has not so far been taken
into account in examining the measurement of epista-
sis.

Suppose, using Davidor’s 3-bit examples again, that
we actually observed the strings in table 2. These are
half-fractions of the Universe; the first one (F1) is bal-
anced but F5 and F3 are not—we can see that there
are 2 occurrences of each allele in the first case, but
in the second case only allele 0 is instantiated at gene
3, while F3 has a different frequency of occurrences of
alleles 0 and 1 in both gene 1 and 3.

Table 2: Some half-fractions of the Universe

fitness value String

Universe Py Fy Fs
v1 000 000|000
v2 001 001 001
v3 010 010010
LN 011 011
Vs 100 100
Vg 101 101
vr 110 110110
vg 111 111

We introduce here the experimental design concept of
a contrast, usually denoted by upper case Roman let-
ters. For example, the contrast

AIOzl—Ozo

(where «, is as previously defined), expresses the av-
erage fitness value when allele 1 is instantiated at gene
1, compared to the instantiation of allele 0. (Since
a1 + ap = 0, the contrast A is readily seen to be just
twice the value of the main effect «;.) In general, any
linear combination ) ¢;v; of the fitness values (with
{¢;} a set of constants) is a contrast, but only a few
of them have any sensible meaning (see [2] for further
details).

In terms of the vector of fitness values v in the Uni-
verse, the contrasts which relate to the main effects
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are

1

A= 2(-1,-1,-1~L 11,1, v
1

B=(=L,~L11,~1,~1,11)v

1
C= (=111 ~11,~1Dv.

Similarly, we can define contrasts relating to the inter-
action effects; so that
1

AB = Z(l’ 1,-1,-1,-1,-1,1,1)v
expresses the average fitness value for cases where the
instantiated alleles at genes 1 and 2 are the same, com-
pared to those where they are different. The other
contrasts are as follows:

1
AC=2(L-1L1 -1 -1 1 -1 1y

1
BC = (1,1, -1 11 -1, -1 1)v

1
ABC = 2(=1,1,1,=1,1, =1, =1, v.

This particular set of 7 contrasts constitute an orthog-
onal partitioning of the information available in the 8
fitness values. In what follows, we will refer to this set,
with the addition of the mean

1
p=g(LLLLLL Ly

as basic contrasts.

When the Universe is known, all these can be com-
puted and the existence (or otherwise) of epistasis
identified. (In fact, this is usually still possible even
when there 1s some random error in the fitness eval-
uation function.) However, when only a fraction is
available, some interesting problems arise.

Suppose we have the first fraction F} as shown above,
so that in terms of the fitness values, we know only
(v1,v2,v7,v8). Using only the awvailable information
to calculate estimates of the basic contrasts, it would
appear natural to estimate the contrasts as follows:

~ 1
A=5(=1,-1,0,0,0,0,1, )v
~ 1
B =5(~1,-1,0,0,0,0,1,1)v
L1
C'=5(=1,1,0,0,0,0, =1, )v.

1

AB = 2(1,1,0,0,0,0,1,1)v
1

AC = 5(1,-1,0,0,0,0,~1, 1)v

s

1
BC = 5(1,-1,0,0,0,0,~1,1)v

ABC = %(—1, 1,0,0,0,0,—1,1)v.
From this it is clear that
A=DB,C=ABC,AC = BC, and AB = ji.
In terms of the basic contrasts, we see that (for exam-
ple)
(A+ B) = %(—1, -1,0,0,0,0,1, 1)v

so that L

A=B=(A+B).
In other words, we cannot estimate A and B sepa-
rately from Fp, but only their sum. The other orthog-
onal combinations of the basic contrasts that can be
computed from this fraction are

(C'+ ABC), (AC + BC) and (AB + ).

These pairs of indistinguishable contrasts are known
as alias sets, and each set is associated with 1 degree
of freedom, corresponding to the 3 degrees of freedom
associated with having 4 fitness values. The contrast
which is aliased with p (AB in the above instance) is
known as the defining contrast for this half-fraction.
By choosing a different defining contrast it is possible
to generate a different half-fraction.

It may be impossible to discern from this fraction
whether there are any epistasis effects, since, for in-
stance, ABC—the 3-gene interaction term—is indis-
tinguishable from C'. Thus, if an Anova table indicates
a significant source of variation due to the orthogonal
contrast (C' 4+ ABC), we cannot tell whether this is
because the fitness is a linear function with a high
contribution from gene 3, or whether it is because the
function 1s epistatic with a 3-gene interaction. Con-
versely, if the table suggests that there is no variation
due to this contrast, it might simply be because the
effect of ABC is in the opposite direction to C.

Table 3: Anova results on F; for Davidor’s functions

S fa
Source df SS | df SS
(A¥B) T 3600 | 1 196.00
(C+ ABC) | 1 1.00 | 1 196.00
(AC 4+ BC) | 1 0.00 | 1 196.00
Total 3 37.00 | 3 588.00

fa fa
Source df SS | df SS
(A¥B) T 10000 | 1 1.00
(C+ABC) |1 5625 | 1 9.00
(AC+BC) |1 4900 |1 25.00
Total 3 205.25 | 3 38.00

As an example, we present in table 3 the Analysis
of Variance for Davidor’s functions fi, fa, f3, fa. It
might still seem reasonable to conclude that f; is not
epistatic, and that f4 ¢s, but it would be necessary to

bear in mind the possibility that C' and ABC, and AC
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and BC, have cancelled each other out in the case of
f1, and that A and B have in the case of f;. It is hard
to make any positive statement about f; and fs.

We can now see that Davidor’s attempt to estimate
epistasis variance from a fraction is fatally flawed, pre-
cisely because of these alias sets. As we noted earlier,
using the fraction Fy for example, negative ‘variances’
were obtained in [4, Table 8]. This occurs because,
for instance, the ‘genic values’ for both genes 1 and 2
(i.e. the contrasts A and B) are included in the ‘vari-
ance’ calculation, when it is not actually possible to
compute them both simultaneously from this fraction.

Other fractions will give rise to different aliasing struc-
tures; for instance if we use the fraction F5, we obtain
the Anova table shown in Table 4, where the estimable
combinations are

(A— AC); (B — BO); (AB — ABC); (=C' + p).

Table 4: Anova results on F5 for Davidor’s functions

S fa
Source df SS | df SS
(A= AC) T 1600 |1 0.00
(B — BC) 1 400 |1  0.00
(AB—ABC) |1 000 |1  0.00
Total 3 20.00 | 3 0.00

fa fa
Source df SS | df SS
(A= AC) T 400 |1 2025
(B — BC) 1 1.00 |1 625
(AB—ABC) |1 000 |1 025
Total 3 5.00 | 3 26.75

Here the confusion is yet greater: it is impossible even
to make a reasonable guess as to whether any epistasis
exists or not, since all the main effects are aliased with
interactions. In the case of f5 no variation has been
detected at all. This 1s not surprising since f> has a
solitary spike at 111 (not one of the points sampled),
but the same result could have been obtained for quite
different reasons.

This fraction was at least balanced across genes 1 and
2; in the case of fraction F3, the confusion is worse.
In cases like this, the estimates of contrasts need to
be defined carefully if they are to be unbiased. For
example, a ‘natural’ estimate of A would be

1
A= 2{0,-1,-1,-1,0.3,0,0}v

However, these estimates are now complex linear com-
binations of the basic contrasts, and it becomes al-
most impossible to judge the degree of epistasis from
an ANOVA table. In principle, it is possible to find
expressions for the estimated contrasts in terms of the
basic contrasts by expressing both as linear combina-
tions of the fitness values v; and equating coefficients.

For example, an expression for Ais
~ 1
A= §{3A—QB—AB—|—C—|—2AC—BC’—QABC}.

The results for other contrasts all display a similarly
complicated structure. Nor is the situation necessarily
any better if we increase the size of the population. If
we take a 3/4 fraction such as (v1, va, v3, vs, v, v7) and

A=1(~1,-1,-1,0,1,1,1,0)v, we find

E:%@A—AB—AC—ABQ.

In such situations it becomes impossible to determine
whether an apparent effect is really caused by the gene
(or interaction of genes) with which it is ostensibly
related.

Thus, any epistasis measure that relies on a decompo-
sition into main and interaction effects must be treated
with great caution. In the first place, as we have shown
in section 2, Davidor’s ‘epistasis variance’ cannot be
interpreted as necessarily indicating the level of diffi-
culty without the auxiliary information of the sign and
magnitude of the effects. This was observed when we
attempted to measure the epistasis of the same N K-
landscapes investigated in section 2 using different or-
thogonal fractions of the Universe. For larger values
of K, the epistasis metric was fairly consistently large,
but for K = 1 the value of the metric varied con-
siderably from one fraction to another, even when a
half-fraction was used. There would be a considerable
danger of concluding that a relatively easy problem
with no interactions at higher than 2-gene order was
actually quite difficult.

Secondly, as we have seen in this section, without
knowing the Universe, the auxiliary information can-
not be obtained. Those N K-landscapes that gave a
high value on the variance metric could not be con-
firmed as difficult because the aliasing prevented the
proper identification of the effects. Since we have
shown in [1] that the ED approach is equivalent to
the Walsh transform analysis popularized by Goldberg
[7, 9], we should point out that this conclusion applies
equally to methods based on Walsh functions as to the
approach of Davidor which has been given prominence
in this paper.

4 Further Implications

The implications for epistasis measurement are clear,
but this also has some relevance to ideas of schema
processing or hyperplane sampling. The ‘traditional’
GA interpretation uses the idea of hyperplane compe-
titions to explain its operation, as in [10], for instance.
It should be evident from the above that a hyperplane
competition is simply a contrast—e.g. the competi-
tion between the hyperplanes (1#%) and (0*#) can be
expressed by the contrast A = oy — ag.
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When we have partial information, our estimate of this
contrast i1s aliased with many others. As an example,
the hyperplane (1 # %) could ‘win’ a competition be-

tween 3-bit chromosomes (i.e. A > 0) simply because
in a particular population A is aliased with BC' and
there is a large interaction between genes 2 and 3. In
practice GA populations are not chosen in any sys-
tematic way, so that there will not even be a clear-cut
choice within disjoint alias sets, but rather a ‘mess’ of
alternative explanations for the phenomenon observed.

The latter is the main reason why ED uses balanced
orthogonal fractions which enable the aliasing to be
controlled. Typically an a priori decision is made to
ignore certain interactions (usually high-order ones),
using problem-specific information or otherwise. Then
a fraction of the Universe is chosen in a way that en-
sures that factors (in GA terminology, genes) which
are potentially important in explaining the data are
aliased, not with each other, but with the ‘unimpor-
tant’ interactions. Often, analysis of this first fraction
leads to certain hypotheses which can be tested by the
evaluation of different fractions, without forgetting the
data that have already been collected. This sequential
procedure may quickly lead to a position where the lev-
els (in GA terminology, alleles) of the important main
factors can be fixed with some confidence, so that fur-
ther experiments would be needed only to refine the
values of some of the less important ones.

This is reminiscent of the standard explanation of what
a GA does, although a GA proceeds without any hu-
man interpretation and intervention. It is of course
this latter characteristic which is one of the main at-
tractions of genetic search. Experimental design meth-
ods are not usually applied to problems with large
numbers of factors (genes) and/or levels (alleles), al-
though simple designs based on Hadamard matrices
are known for large problems, precisely because of the
considerable human input that is needed.

However, the implication of the above analysis is that
G As may distribute their search effort in an inefficient
way. Firstly, by using random populations, a genetic
search 1s bound to create complicated alias sets. In
contrast, ED uses any prior knowledge that is available
to create ‘clean’ sets which can extract the maximum
useful information from the data.

Secondly, a GA forgets the results of previous trials
as it progresses, at the same time as the population
becomes less and less diverse. The effect of this is fur-
ther to complicate the structure of the alias sets; in the
limit, if the population converges to multiple copies of
a single string, all effects are aliased with each other,
and the population contains no useful information at
all about the problem as a whole. Again, the ED ap-
proach is different; by making use of all the informa-
tion gathered over the course of the experiment, it can
identify the important effects fairly rapidly and effi-

ciently.

5 Conclusions

We have used the experimental design framework to
analyse in detail Davidor’s suggested epistasis metric,
which we have shown to be equivalent to Analysis of
Variance (Anova) for the Universe. We have demon-
strated that while it may give some guidance as to the
likely difficulty of a given problem, we cannot draw
unequivocal conclusions from it, even when the whole
Universe 1s used, unless we also compute the actual ED
effects themselves. As to do the latter requires more
computation than simply to enumerate the Universe,
we need to consider the question of whether anything
useful can be deduced from a sample (a GA ‘popula-
tion’). This requires an understanding of the under-
lying alias structures induced by a particular choice
of population; the lack of this understanding explains
the apparent failure of Davidor’s metric in [4]. We
then showed that even if populations are chosen in a
controlled way in order to produce disjoint alias sets, it
becomes very difficult to determine whether any epis-
tasis could be present (using the Anova table) or to
estimate the influence of a single gene, unless further
assumptions can be made as to the likely maximum
order of interaction effects.

We also discussed some of the implications of this anal-
ysis for the traditional interpretation of GA opera-
tions, and made some comparisons between the GA
and ED approaches. In conclusion, we would remark
that the ideal algorithm would be one which was able
to automate the decisions made in a typical ED, so
that at any stage the ‘best’ point to evaluate next could
be chosen in the light of all the information available.
However, as pointed out above, such automation is
difficult. The GA could be viewed as a step in this
direction, and despite its inefficiencies, the weight of
empirical evidence suggests that 1t often does fairly
well.

A possible explanation for this is that many of the
problems to which GAs have been applied are not all
that epistatic, or that the epistasis is of the benign ‘re-
inforcing’ variety. For instance, Das and Whitley [11]
argue that many problems can be ‘solved’ by sequen-
tially solving the order-1 hyperplane competitions, i.e.
estimating the main effects one at a time by randomly
sampling from the Universe, and suggest that a GA
may well be implicitly using such a strategy. If this is
true, in light of our analysis, we conjecture that the GA
recognizes the ‘true’ contrast in a particular alias set
(or equivalently, the ‘true’ main effect) because most of
the others are negligible in comparison. We have also
observed empirically, that as larger samples are taken,
the coefficient of the ‘true’ basic contrast in the alias
set often becomes larger relative to the coefficients of
the others, so that even where the others are not neg-

www.manaraa.com



ligible the ‘true’ one receives sufficient weight to be
recognized.

We would point out that in such situations, the re-
sults of such a strategy could be achieved far more
efficiently by using an orthogonal fractional design to
estimate the main effects simultaneously; for instance,
we have ‘solved’” Das and Whitley’s quadratic prob-
lem [11, p.168-9] using a 1/16 orthogonal fraction—
requiring far fewer fitness evaluations than their se-
quential approach. Of course in many applications, fit-
ness evaluation is relatively cheap, but for cases where
this is not so, ED could be usefully employed in order
to focus the genetic search. In further work, we hope
to explore such possibilities in the context of a com-
parison of experimental design methods and GAs in
solving some real engineering design problems.
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