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Epistasis in Genetic Algorithms: An Experimental DesignPerspective �Colin R. Reeves and Christine C. WrightSchool of Mathematical and Information SciencesCoventry UniversityUKEmail: CRReeves@coventry.ac.ukAbstractIn an earlier paper we examined the rela-tionship between genetic algorithms (GAs)and traditional methods of experimental de-sign. This was motivated by an investiga-tion into the problems caused by epistasis inthe implementation and application of GAsto optimization problems. We showed howthis viewpoint enables us to gain further in-sights into the determination of epistatic ef-fects, and into the value of di�erent forms ofencoding a problem for a GA solution. Wealso demonstrated the equivalence of this ap-proach toWalsh transform analysis.In this paper we consider further the ques-tion of whether the epistasis metric actuallygives a good prediction of the ease or di�-culty of solution of a given problem by a GA.Our original analysis assumed, as does therest of the related literature, knowledge ofthe complete solution space. In practice, weonly ever sample a fraction of all possible so-lutions, and this raises signi�cant questionswhich are the subject of the second part ofthis paper. In order to analyse these ques-tions, we introduce the concept of alias sets,and conclude by discussing some implicationsfor the traditional understanding of how GAswork.1 IntroductionIn an earlier paper [1], we introduced the experimen-tal design (ED) decomposition model as a useful per-spective for the analysis of genetic algorithms (GAs).However, the necessarily expository nature of that pa-per meant that we were not able fully to explore the�Published in L.J.Eshelman (Ed.) (1995) Proceedingsof the 6th International Conference on Genetic Algorithms,Morgan Kaufmann, San Mateo, CA.

value of the proposed approach to the measurement ofepistasis, and we intend to return to this subject ingreater depth in the current article.In order to make this paper self-contained for read-ers who have not seen [1], we repeat the basic EDmodel here. For those needing more general informa-tion on the �eld of experimental design, a very com-prehensive introduction can be found in Hinkelmannand Kempthorne [2].We assume that we have populations of binary stringsfSg of length l, and that the �tness of string S is de-noted by v(S). We use the term Universe to denotethe set of all possible 2l strings, and reserve the use ofthe term population for the sense in which it is com-monly used in the GA community.The idea of assuming an underlying linear model (de-�ned on the bits) for the �tness of a string is implicitin several studies of GAs. Davidor [3, 4] for example,did so in his attempt to de�ne measures of epistasis|astudy which we dealt with in some detail in the �rstpaper and will return to again here. Assuming no epis-tasis, we can write such a model asv(S) = constant + lXi=1(e�ect of allele at gene i);while at the other extreme, we can express the fullepistatic model asv(S) = constant + lXi=1(e�ect of allele at gene i)+ l�1Xi=1 lXj=i+1(interaction of alleles at genes i and j)+ . . .+(interaction of alleles at genes 1,. . . ,l)In conventional experimental design, the above modelwould actually be written in parametric form, andwould also allow for the possibility of random error.
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For example, the model for a string of 3 bits could bewritten as follows:vpqrs = �+ �p + �q + 
r + (��)pq + (�
)pr + (�
)qr+(��
)pqr + "pqrswhere vpqrs is the �tness of the string (p; q; r), and thesubscript s denotes the replication number (i.e. thesth occurrence of the string). If there is no intrinsicrandom error, we can of course drop the �nal term(and of course the subscript s). The parameters onthe right-hand side are as follows:� average �tness�p e�ect of allele p at gene 1�q e�ect of allele q at gene 2
r e�ect of allele r at gene 3(��)pq joint e�ect of allele p at gene 1 and allele qat gene 2(�
)pr joint e�ect of allele p at gene 1 and allele rat gene 3(�
)qr joint e�ect of allele q at gene 2 and allele rat gene 3(��
)pqr joint e�ect of allele p at gene 1, allele q atgene 2 and allele r at gene 3"pqrs random error for replication s of string(p; q; r)Davidor assumes zero random error, which is reason-able in many, although not all, applications of GAs,and we shall follow suit.In the �rst paper we also followed Davidor in assumingthat we knew the �tness of every one of the wholeuniverse of strings, in order to present the basic EDapproach in as uncomplicated a manner as possible.However, in the real situation, the various quantitiesproposed by Davidor for obtaining an epistasis metricare only estimates of parameters. In fact, not only arethese measures compromised, but (as we shall show) soare the estimates of schema �tness|quantities whichare fundamental in the traditional understanding ofhow GAs work.1.1 An exampleTo motivate the arguments, suppose we have a 3-bitstring, and the �tness of every string in the Universeis known. There are of course 23 = 8 strings , andtherefore 8 �tness values, but the experimental designmodel above has 27 parameters. It is thus essentialto impose some side conditions if these parameters areto be estimated; the usual ones are the obvious con-straints that at every order of interaction, the param-eters sum to zero for each subscript. This results inan additional 19 independent relationships and thusallows the `solution' of the above model|in the sensethat all the parameter values can be determined if wehave observed every one of the 8 possible strings|the

Universe. For example, we �nd that� = v����+ �p = vp�� for p = 0; 1�+ �q = v�q� for q = 0; 1�+ 
r = v��r for r = 0; 1where the notation vp��, for instance, means averag-ing over subscripts q and r. These e�ects are exactlyequivalent to Davidor's `excess allele values', while his`excess genic values' are found by summing �p, �q and
r for each possible combination of p; q; r. Finally, his`string genic value' is clearly� + �p + �q + 
r :The di�erence between the actual value and the genicvalue, �(S), is therefore simply the sum of all the in-teraction terms; putting it another way, zero epistasisis seen to be equivalent to having no interactions inthe model.In [1] we showed how this information can be obtainedby the well-known statistical method of `Analysis ofVariance' (Anova), whereby the variability of the �t-ness values (measured by sums of squared deviationsfrom mean �tness, and denoted by SS) is partitionedinto orthogonal components from identi�able sources.Associated with these SS, are the degrees of freedom|the number of independent elements in the associatedSS.It is well-known (and easy to prove) thatTotal SS = Main e�ects SS + Interaction SSand these values Davidor simply divides by a constantto obtain his `variances'. Thus for the Universe, it ishardly surprising to �nd thatTotal `variance' = Genic `variance'+Epistasis `variance':However, when Davidor examined the case of a sample,this result appeared no longer to be true; in particu-lar, some of the `variances' turned out to be negative.Later we shall show why this occurs, and how his anal-ysis would have to be modi�ed in order to retain theadditivity of the variances.2 The Measurement of EpistasisGiven the partitioning of the variances in the aboveway, an obvious metric for the degree of epistasis in aproblem is to express the Interaction SS as a percent-age of the Total SS. The four 3-bit functions Davidorused were analysed in [1], and using this metric epista-sis varied from 0% for the case of a linear function to93% for a deceptive function. The �rst question thatarises is naturally whether this metric is useful andmeaningful in the sense that it relates to the likely de-gree of di�culty for solving the problem by means ofa GA.
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In order to explore this question further, we carried outsome experiments using NK-landscapes as describedby Manderick et al. [5]. Varying the parameter K forthese functions has the e�ect of changing the amountof epistasis, and in [5] it is suggested that a GA will�nd problems with high values ofK more di�cult thanlow values. Table 1 shows the results of some experi-ments for N = 9 and K = 1; 2; 3; 4 (10 experiments foreach K), where the interaction SS has been measuredas a percentage of the total SS.Table 1: Values of the epistasis metric for 10 9K-landscapes K Mean Standard deviation1 40.2 9.32 62.5 13.53 77.6 8.64 85.5 6.4As a contrasting example, Grefenstette's `easy decep-tive' function [6, p.81] measured only 7.2% using theepistasis metric. From these results it would seem areasonable deduction that using this metric leads to ameans of detecting epistatic problems, and therefore amethod of determining the degree of di�culty facinga GA.However, before leaping to this conclusion, we need toexamine the nature of interaction e�ects more care-fully. Figure 1 gives a pictorial representation of inter-action in the case of two genes A and B.What this illustrates is as follows: in the upper dia-gram, the best allele for each gene is 1, and while thereis epistasis, in that the joint e�ect of having the allelesof both A and B set at 1 exceeds the sum of the in-dividual main e�ects, its in
uence is benign since theinteraction reinforces the main e�ects. However, in thelower diagram, the interaction has a malign in
uence:the best allele for both A and B is 1, but overall it isbetter to set gene A at 0. From a traditional GA per-spective, there is clearly an element of deception aboutthe second case: the schema average v1� exceeds v0�,but v01 > v11.In terms of the actual values of the e�ects, the �rst sit-uation corresponds to the case where the interactione�ect (��)01 has the same sign as the main e�ect �0,and the second to the case where the signs are di�er-ent. In fact it is easily seen from the conditions in thesecond case (v1� > v0� and v01 > v11) that(��)01 > ��0:It is natural to ask therefore, whether the existenceof e�ects of di�erent sign is an important in
uence onthe epistasis of a particular problem. The answer is:maybe!First, we should realize that the magnitude of the in-teraction (relative to its associated main e�ects) is also
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Figure 1: Benign and malign interactionsimportant. In Figure 2 the e�ects are still of oppositesign, but there will be little di�culty in �nding thebest combination because the best allele for gene A isnow 0; in terms of schema averages, v1� < v0�.Secondly, the order of the interaction terms is alsorelevant. The side conditions on the e�ects result inthe constraint that for the case of 2-gene interactions,(��)11 = (��)00 = �(��)01 = �(��)10:However, for a 3-gene interaction (��
)pqr say, therelationships for di�erent values of p; q; r are(��
)111 = (��
)100 = (��
)010 = (��
)001 =�(��
)110 = �(��
)101 = �(��
)011 = �(��
)000:On applying these relationships to a particular situ-ation, it becomes clear that it may be the combinede�ect of all interactions up to a particular order thatdetermines the di�culty of solving a particular prob-lem. For example, in a 3-bit problem where we havev0�� < v1��, but v011 > v111, the conditions can beshown to reduce to(��)01 + (�
)01 + (��
)011 > ��0
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Fitness
Gene Aallele 1allele 0 Gene B - allele 0Gene B - allele 1((((((((((((PPPPPPPPPPPPFigure 2: Relatively small interactionwhereas in the case v001 > v111, they become(�
)01 + (�
)01 > �(�0 + �0):Both cases are epistatic to some degree, but in the sec-ond case the 3-gene interaction (no matter how largeit is) is irrelevant.However, if this analysis is followed through to thecalculation of the Sums of Squares, it becomes clearthat after cancelling some factors out, we are left withterms in the square of the e�ect, so that positive in-teraction e�ects cannot be distinguished from negativeones. For example, in the case of a 3-bit binary string,the SS due to the �rst-order interaction term betweengenes 1 and 2 is (see [1] for details)Xp Xq Xr (vpq� � vp�� � v�q� + v���)2which in virtue of the side conditions reduces to2Xp Xq (��)2pq :Thus Davidor's variance metric will have the samevalue for functions that are actually quite di�erent interms of their di�culty of solution.In summary, we see that the existence of large interac-tion Sums of Squares may be an important indicatorof epistasis in some cases but not in others. The prob-lem is that we cannot tell the di�erence simply fromthe SS, and we need the auxiliary information aboutthe magnitude and sign of the e�ects to get a clearerpicture of the di�culty of a particular problem.In [1] we showed that Goldberg's 3-bit deceptive func-tion [7] is characterized by a large (negative) 3-gene in-teraction, and by conditions that imply combinationsof interactions must have a net e�ect greater than themain e�ects. This can be extended to longer strings,and in general it can be shown that a class of hard

deceptive functions may be generated by a large high-order interaction term of an appropriate sign, as inthe analysis by Homaifar et al. [8] for example. (In[8] Walsh functions are used; that these are equivalentto ED is shown in [1].) Other hard but non-deceptivefunctions such as that described by Grefenstette [6]can also be shown to have large interaction terms, soit would seem that if we could establish the existence orotherwise of substantial high-order interaction e�ects,it would certainly be a useful indicator of problem dif-�culty.3 Making Sense of Partial InformationThe next question to consider is how this auxiliaryinformation can be obtained in practice. A GA popu-lation of strings is really only a sample of the Universeof chromosomes, but this fact has not so far been takeninto account in examining the measurement of epista-sis.Suppose, using Davidor's 3-bit examples again, thatwe actually observed the strings in table 2. These arehalf-fractions of the Universe; the �rst one (F1) is bal-anced but F2 and F3 are not|we can see that thereare 2 occurrences of each allele in the �rst case, butin the second case only allele 0 is instantiated at gene3, while F3 has a di�erent frequency of occurrences ofalleles 0 and 1 in both gene 1 and 3.Table 2: Some half-fractions of the Universe�tness value StringUniverse F1 F2 F3v1 0 0 0 0 0 0 0 0 0v2 0 0 1 0 0 1 0 0 1v3 0 1 0 0 1 0 0 1 0v4 0 1 1 0 1 1v5 1 0 0 1 0 0v6 1 0 1 1 0 1v7 1 1 0 1 1 0 1 1 0v8 1 1 1 1 1 1We introduce here the experimental design concept ofa contrast, usually denoted by upper case Roman let-ters. For example, the contrastA = �1 � �0(where �p is as previously de�ned), expresses the av-erage �tness value when allele 1 is instantiated at gene1, compared to the instantiation of allele 0. (Since�1 + �0 = 0, the contrast A is readily seen to be justtwice the value of the main e�ect �1.) In general, anylinear combination P civi of the �tness values (withfcig a set of constants) is a contrast, but only a fewof them have any sensible meaning (see [2] for furtherdetails).In terms of the vector of �tness values v in the Uni-verse, the contrasts which relate to the main e�ects
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are A = 14(�1;�1;�1;�1; 1; 1;1; 1)vB = 14(�1;�1; 1; 1;�1;�1; 1; 1)vC = 14(�1; 1;�1; 1;�1; 1;�1; 1)v:Similarly, we can de�ne contrasts relating to the inter-action e�ects, so thatAB = 14(1; 1;�1;�1;�1;�1;1;1)vexpresses the average �tness value for cases where theinstantiated alleles at genes 1 and 2 are the same, com-pared to those where they are di�erent. The othercontrasts are as follows:AC = 14(1;�1; 1;�1;�1; 1;�1; 1)vBC = 14(1;�1;�1; 1; 1;�1;�1;1)vABC = 14(�1; 1; 1;�1; 1;�1;�1; 1)v:This particular set of 7 contrasts constitute an orthog-onal partitioning of the information available in the 8�tness values. In what follows, we will refer to this set,with the addition of the mean� = 18(1; 1; 1; 1; 1;1; 1; 1)vas basic contrasts.When the Universe is known, all these can be com-puted and the existence (or otherwise) of epistasisidenti�ed. (In fact, this is usually still possible evenwhen there is some random error in the �tness eval-uation function.) However, when only a fraction isavailable, some interesting problems arise.Suppose we have the �rst fraction F1 as shown above,so that in terms of the �tness values, we know only(v1; v2; v7; v8). Using only the available informationto calculate estimates of the basic contrasts, it wouldappear natural to estimate the contrasts as follows:bA = 12(�1;�1; 0; 0; 0; 0;1;1)vbB = 12(�1;�1; 0; 0; 0; 0;1;1)vbC = 12(�1; 1; 0; 0; 0; 0;�1;1)v:dAB = 14(1; 1; 0; 0; 0;0; 1; 1)vdAC = 12(1;�1; 0; 0; 0; 0;�1; 1)vdBC = 12(1;�1; 0; 0; 0;0;�1; 1)v

dABC = 12(�1; 1; 0; 0; 0; 0;�1; 1)v:From this it is clear thatbA = bB; bC = dABC;dAC =dBC; anddAB = b�:In terms of the basic contrasts, we see that (for exam-ple) (A+ B) = 12(�1;�1; 0; 0; 0; 0;1; 1)vso that bA = bB = (A+ B):In other words, we cannot estimate A and B sepa-rately from F1, but only their sum. The other orthog-onal combinations of the basic contrasts that can becomputed from this fraction are(C +ABC); (AC + BC) and (AB + �):These pairs of indistinguishable contrasts are knownas alias sets, and each set is associated with 1 degreeof freedom, corresponding to the 3 degrees of freedomassociated with having 4 �tness values. The contrastwhich is aliased with � (AB in the above instance) isknown as the de�ning contrast for this half-fraction.By choosing a di�erent de�ning contrast it is possibleto generate a di�erent half-fraction.It may be impossible to discern from this fractionwhether there are any epistasis e�ects, since, for in-stance, ABC|the 3-gene interaction term|is indis-tinguishable fromC. Thus, if an Anova table indicatesa signi�cant source of variation due to the orthogonalcontrast (C + ABC), we cannot tell whether this isbecause the �tness is a linear function with a highcontribution from gene 3, or whether it is because thefunction is epistatic with a 3-gene interaction. Con-versely, if the table suggests that there is no variationdue to this contrast, it might simply be because thee�ect of ABC is in the opposite direction to C.Table 3: Anova results on F1 for Davidor's functionsf1 f2Source df SS df SS(A+B) 1 36.00 1 196.00(C + ABC) 1 1.00 1 196.00(AC +BC) 1 0.00 1 196.00Total 3 37.00 3 588.00f3 f4Source df SS df SS(A+B) 1 100.00 1 4.00(C + ABC) 1 56.25 1 9.00(AC +BC) 1 49.00 1 25.00Total 3 205.25 3 38.00As an example, we present in table 3 the Analysisof Variance for Davidor's functions f1; f2; f3; f4. Itmight still seem reasonable to conclude that f1 is notepistatic, and that f4 is, but it would be necessary tobear in mind the possibility that C and ABC, and AC
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and BC, have cancelled each other out in the case off1, and that A and B have in the case of f4. It is hardto make any positive statement about f2 and f3.We can now see that Davidor's attempt to estimateepistasis variance from a fraction is fatally 
awed, pre-cisely because of these alias sets. As we noted earlier,using the fraction F1 for example, negative `variances'were obtained in [4, Table 8]. This occurs because,for instance, the `genic values' for both genes 1 and 2(i.e. the contrasts A and B) are included in the `vari-ance' calculation, when it is not actually possible tocompute them both simultaneously from this fraction.Other fractions will give rise to di�erent aliasing struc-tures; for instance if we use the fraction F2, we obtainthe Anova table shown in Table 4, where the estimablecombinations are(A� AC); (B �BC); (AB � ABC); (�C + �):Table 4: Anova results on F2 for Davidor's functionsf1 f2Source df SS df SS(A� AC) 1 16.00 1 0.00(B �BC) 1 4.00 1 0.00(AB � ABC) 1 0.00 1 0.00Total 3 20.00 3 0.00f3 f4Source df SS df SS(A� AC) 1 4.00 1 20.25(B �BC) 1 1.00 1 6.25(AB � ABC) 1 0.00 1 0.25Total 3 5.00 3 26.75Here the confusion is yet greater: it is impossible evento make a reasonable guess as to whether any epistasisexists or not, since all the main e�ects are aliased withinteractions. In the case of f2 no variation has beendetected at all. This is not surprising since f2 has asolitary spike at 111 (not one of the points sampled),but the same result could have been obtained for quitedi�erent reasons.This fraction was at least balanced across genes 1 and2; in the case of fraction F3, the confusion is worse.In cases like this, the estimates of contrasts need tobe de�ned carefully if they are to be unbiased. Forexample, a `natural' estimate of A would bebA = 13f0;�1;�1;�1; 0;3;0; 0gv:However, these estimates are now complex linear com-binations of the basic contrasts, and it becomes al-most impossible to judge the degree of epistasis froman ANOVA table. In principle, it is possible to �ndexpressions for the estimated contrasts in terms of thebasic contrasts by expressing both as linear combina-tions of the �tness values vi and equating coe�cients.

For example, an expression for bA isbA = 13f3A� 2B � AB + C + 2AC � BC � 2ABCg:The results for other contrasts all display a similarlycomplicated structure. Nor is the situation necessarilyany better if we increase the size of the population. Ifwe take a 3=4 fraction such as (v1; v2; v3; v5; v6; v7) andbA = 13 (�1;�1;�1; 0; 1; 1;1;0)v, we �ndbA = 13(3A� AB �AC � ABC):In such situations it becomes impossible to determinewhether an apparent e�ect is really caused by the gene(or interaction of genes) with which it is ostensiblyrelated.Thus, any epistasis measure that relies on a decompo-sition into main and interaction e�ects must be treatedwith great caution. In the �rst place, as we have shownin section 2, Davidor's `epistasis variance' cannot beinterpreted as necessarily indicating the level of di�-culty without the auxiliary information of the sign andmagnitude of the e�ects. This was observed when weattempted to measure the epistasis of the same NK-landscapes investigated in section 2 using di�erent or-thogonal fractions of the Universe. For larger valuesof K, the epistasis metric was fairly consistently large,but for K = 1 the value of the metric varied con-siderably from one fraction to another, even when ahalf-fraction was used. There would be a considerabledanger of concluding that a relatively easy problemwith no interactions at higher than 2-gene order wasactually quite di�cult.Secondly, as we have seen in this section, withoutknowing the Universe, the auxiliary information can-not be obtained. Those NK-landscapes that gave ahigh value on the variance metric could not be con-�rmed as di�cult because the aliasing prevented theproper identi�cation of the e�ects. Since we haveshown in [1] that the ED approach is equivalent tothe Walsh transform analysis popularized by Goldberg[7, 9], we should point out that this conclusion appliesequally to methods based on Walsh functions as to theapproach of Davidor which has been given prominencein this paper.4 Further ImplicationsThe implications for epistasis measurement are clear,but this also has some relevance to ideas of schemaprocessing or hyperplane sampling. The `traditional'GA interpretation uses the idea of hyperplane compe-titions to explain its operation, as in [10], for instance.It should be evident from the above that a hyperplanecompetition is simply a contrast|e.g. the competi-tion between the hyperplanes (1��) and (0��) can beexpressed by the contrast A = �1 � �0.
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When we have partial information, our estimate of thiscontrast is aliased with many others. As an example,the hyperplane (1 � �) could `win' a competition be-tween 3-bit chromosomes (i.e. bA > 0) simply becausein a particular population A is aliased with BC andthere is a large interaction between genes 2 and 3. Inpractice GA populations are not chosen in any sys-tematic way, so that there will not even be a clear-cutchoice within disjoint alias sets, but rather a `mess' ofalternative explanations for the phenomenon observed.The latter is the main reason why ED uses balancedorthogonal fractions which enable the aliasing to becontrolled. Typically an a priori decision is made toignore certain interactions (usually high-order ones),using problem-speci�c information or otherwise. Thena fraction of the Universe is chosen in a way that en-sures that factors (in GA terminology, genes) whichare potentially important in explaining the data arealiased, not with each other, but with the `unimpor-tant' interactions. Often, analysis of this �rst fractionleads to certain hypotheses which can be tested by theevaluation of di�erent fractions, without forgetting thedata that have already been collected. This sequentialprocedure may quickly lead to a position where the lev-els (in GA terminology, alleles) of the important mainfactors can be �xed with some con�dence, so that fur-ther experiments would be needed only to re�ne thevalues of some of the less important ones.This is reminiscent of the standard explanation of whata GA does, although a GA proceeds without any hu-man interpretation and intervention. It is of coursethis latter characteristic which is one of the main at-tractions of genetic search. Experimental design meth-ods are not usually applied to problems with largenumbers of factors (genes) and/or levels (alleles), al-though simple designs based on Hadamard matricesare known for large problems, precisely because of theconsiderable human input that is needed.However, the implication of the above analysis is thatGAs may distribute their search e�ort in an ine�cientway. Firstly, by using random populations, a geneticsearch is bound to create complicated alias sets. Incontrast, ED uses any prior knowledge that is availableto create `clean' sets which can extract the maximumuseful information from the data.Secondly, a GA forgets the results of previous trialsas it progresses, at the same time as the populationbecomes less and less diverse. The e�ect of this is fur-ther to complicate the structure of the alias sets; in thelimit, if the population converges to multiple copies ofa single string, all e�ects are aliased with each other,and the population contains no useful information atall about the problem as a whole. Again, the ED ap-proach is di�erent; by making use of all the informa-tion gathered over the course of the experiment, it canidentify the important e�ects fairly rapidly and e�-

ciently.5 ConclusionsWe have used the experimental design framework toanalyse in detail Davidor's suggested epistasis metric,which we have shown to be equivalent to Analysis ofVariance (Anova) for the Universe. We have demon-strated that while it may give some guidance as to thelikely di�culty of a given problem, we cannot drawunequivocal conclusions from it, even when the wholeUniverse is used, unless we also compute the actual EDe�ects themselves. As to do the latter requires morecomputation than simply to enumerate the Universe,we need to consider the question of whether anythinguseful can be deduced from a sample (a GA `popula-tion'). This requires an understanding of the under-lying alias structures induced by a particular choiceof population; the lack of this understanding explainsthe apparent failure of Davidor's metric in [4]. Wethen showed that even if populations are chosen in acontrolled way in order to produce disjoint alias sets, itbecomes very di�cult to determine whether any epis-tasis could be present (using the Anova table) or toestimate the in
uence of a single gene, unless furtherassumptions can be made as to the likely maximumorder of interaction e�ects.We also discussed some of the implications of this anal-ysis for the traditional interpretation of GA opera-tions, and made some comparisons between the GAand ED approaches. In conclusion, we would remarkthat the ideal algorithm would be one which was ableto automate the decisions made in a typical ED, sothat at any stage the `best' point to evaluate next couldbe chosen in the light of all the information available.However, as pointed out above, such automation isdi�cult. The GA could be viewed as a step in thisdirection, and despite its ine�ciencies, the weight ofempirical evidence suggests that it often does fairlywell.A possible explanation for this is that many of theproblems to which GAs have been applied are not allthat epistatic, or that the epistasis is of the benign `re-inforcing' variety. For instance, Das and Whitley [11]argue that many problems can be `solved' by sequen-tially solving the order-1 hyperplane competitions, i.e.estimating the main e�ects one at a time by randomlysampling from the Universe, and suggest that a GAmay well be implicitly using such a strategy. If this istrue, in light of our analysis, we conjecture that the GArecognizes the `true' contrast in a particular alias set(or equivalently, the `true' main e�ect) because most ofthe others are negligible in comparison. We have alsoobserved empirically, that as larger samples are taken,the coe�cient of the `true' basic contrast in the aliasset often becomes larger relative to the coe�cients ofthe others, so that even where the others are not neg-
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